Automatic Verb Classification Using Distributions of Grammatical Features

نویسندگان

  • Suzanne Stevenson
  • Paola Merlo
چکیده

We apply machine learning techniques to classify automatically a set of verbs into lexical semantic classes, based on distributional approximations of diathe-ses, extracted from a very large annotated corpus. Distributions of four grammatical features are sufficient to reduce error rate by 50% over chance. We conclude that corpus data is a usable repository of verb class information, and that corpus-driven extraction of grammatical features is a promising methodology for automatic lexical acquisition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Verb Classiication Using Distributions of Grammatical Features

We apply machine learning techniques to classify automatically a set of verbs into lexical semantic classes, based on distributional approximations of diathe-ses, extracted from a very large annotated corpus. Distributions of four grammatical features are suucient to reduce error rate by 50% over chance. We conclude that corpus data is a usable repository of verb class information, and that cor...

متن کامل

Automatic Lexical Acquisition Based on Statistical Distributions

We automatically classify verbs into lexical semantic classes, based on distributions of indicators of verb alternations, extracted from a very large annotated corpus. We address a problem which is particularly di cult because the verb classes, although semantically di erent, show similar surface syntactic behavior. Five grammatical features are su cient to reduce error rate by more than 50% ov...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999